Brain Chips


About

An implantable brain-computer interface the size of an aspirin has been clinically tested on humans by American company Cyber kinetics. The 'Brain Gate' device can provide paralyzed or motor-impaired patients a mode of communication through the translation of thought into direct computer control. The technology driving this breakthrough in the Brain-Machine-Interface field has a myriad of potential applications, including the development of human augmentation for military and commercial purposes. Brain Gate system in the current human trials, a 25 year old quadriplegic has successfully been able to switch on lights, adjust the volume on a TV, change channels and read e-mail using only his brain. Crucially the patient was able to do these tasks while carrying on a conversation and moving his head at the same time. John Donoghue, the chairman of the Department of Neuroscience at Brown University, led the original research project and went on to co-found Cyber kinetics, where he is currently chief scientific officer overseeing the clinical trial. It is expected that people using the Brain Gate system will employ a personal computer as the gateway to range of self-directed activities. These activities may extend beyond typical computer functions (e.g., communication) to include the control of objects in the environment such as a telephone, a television and lights. Usually the brain is connected to an external computer system through a chip composed of electrodes.


Invasive Bcis

Invasive BCI research has targeted repairing damaged or congenitally absent sight and hearing and providing new functionality to paralyzed people. There has been great success in using cochlear implants in humans as a treatment for non congenital deafness, but it's not clear that these can be considered brain-computer interfaces. There is also promising research in vision science where direct brain implants have been used to treat non-congenital blindness. One of the first scientists to come up with a working brain interface to restore sight was private researcher, William Dobelle. Dobelle's first prototype was implanted into Jerry, a man blinded in adulthood, in 1978. A single-array BCI containing 68 electrodes was implanted onto Jerry’s visual cortex and succeeded in producing phosphenes. The system included TV cameras mounted on glasses to send signals to the implant. Initially the implant allowed Jerry to see shades of grey in a limited field of vision and at a low frame-rate also requiring him to be hooked up to a two-ton Mainframe. Shrinking electronics and faster computers made his artificial eye more portable And allowed him to perform simple task sun assisted.

Abstract

Thousands of people around the world suffer from paralysis, rendering them dependent on others toper form even the most basic tasks. But that could change, because of the latest achievements in the Brain-Computer Interface (BCI), which could help them regain a portion of their lost in dependence. Even normal humans may also be able to utilize Brain Chip Technology to enhance their relationship with the digital world-provided they are willing to receive the implant. The term ‘Brain-Computer Interface’ refers to the direct interaction between a healthy brain and a computer. Intense efforts and research in this BCI field over the past decade have recently resulted in a human BCI implantation, which is a great news for all of us, especially for those who have been resigned to spending their lives in wheel chairs.

 Conclusion

Here by, we conclude that neural interfaces have emerged as effective interventions to reduce the burden associated with some neurological diseases, injuries and disabilities. The Brain Gate helps the  quadriplegic patients who cannot perform even simple actions without the help of another person are able to do things like checking e-mails, turn the TV on or off, and control a prosthetic arm— with just their thoughts.




No comments:

Post a Comment