About
The standard of living in a society is measured by the amount of energy consumed. In the present scenario where the conventional fuels are getting depleted at a very fast rate the current energy reserves are not expected to last for more than 100 years. Improving the harnessing efficiency of non-conventional energy sources like solar, wind etc. as a substitute for the conventional sources is under research.
A new step that has developed in this field is ‘Bubble Power’-the revolutionary new energy source. It is working under the principle of Sonofusion. For several years Sonofusion research team from various organizations have joined forces to create Acoustic Fusion Technology Energy Consortium (AFTEC) to promote the development of sonofusion. It was derived from a related phenomenon known as sonoluminescence. Sonofusion involves tiny bubbles imploded by sound waves that can make hydrogen nuclei fuse and may one day become a revolutionary new energy source.
Sonofusion
The apparatus consists of a cylindrical Pyrex glass flask 100 m.m. in high and 65m.m.in diameter. A lead-zirconate-titanate ceramic piezoelectric crystal in the form of a ring is attached to the flask’s outer surface. The piezoelectric ring works like the loud speakers in a sonoluminescence experiment, although it creates much stronger pressure waves. When a positive voltage is applied to the piezoelectric ring, it contracts; when the voltage is removed, it expands to its original size.
Action Of Vacuum Pump
The naturally occurring gas bubbles cannot withstand high temperature and pressure. All the naturally occurring gas bubbles dissolved in the liquid are removed virtually by attaching a vacuum pump to the flask and acoustically agitating the liquid.
Action Of The Wave Generator
To initiate the sonofusion process, we apply an oscillating voltage with a frequency of about 20,000 hertz to the piezoelectric ring. The alternating contractions and expansions of the ring-and there by of the flask-send concentric pressure waves through the liquid. The waves interact, and after a while they set up an acoustic standing wave that resonates and concentrates a huge amount of sound energy. This wave causes the region at the flask’s centre to oscillate between a maximum (1500kpa) and a minimum pressure. (-1500kpa).
Action Of The Neutron Generator
Precisely when the pressure reaches its lowest point, a pulsed neutron generator is fired. This is a commercially available, baseball bat size device that sits next to the flask. The generator emits high-energy neutrons at 14.1 mega electron volts in a burst that lasts about six microseconds and that goes in all directions.
Other Approaches Of Fusion Reaction
There are mainly two approaches on fusion reactions other than bubble power. They are
1. Laser Beam Technique
2. Magnetic Confinement Fusion
Magnetic Confinement Fusion
It uses powerful magnetic fields to create immense heat and pressure in hydrogen plasma contained in a large, toroidal device known as a tokamak. The fusion produces high energy by neutrons that escape the plasma and hit a liquid filled blanket surrounding it. The idea is to use the heat produced in the blanket to generate vapor to drive a turbine and thus generate electricity.
Conclusion
With the steady growth of world population and with economic progress in developing countries, average electricity consumption per person has increased significantly. There for seeking new sources of energy isn’t just important, it is necessary. So for more than half a century, thermonuclear fusion has held out the promise of cheap clean and virtually limitless energy. Unleashed through a fusion reactor of some sort, the energy from 1 gram of deuterium, an isotope of hydrogen, would be equivalent to that produced by burning 7000 liters of gasoline.