What Does The Infrared Show Us?
This is an infrared image of the Earth taken by the GOES 6 satellite in 1986. A scientist used temperatures to determine which parts of the image were from clouds and which were land and sea. Based on these temperature differences, he colored each separately using 256 colors, giving the image a realistic appearance.
Why use the infrared to image the Earth? While it is easier to distinguish clouds from land in the visible range, there is more detail in the clouds in the infrared. This is great for studying cloud structure. For instance, note that darker clouds are warmer, while lighter clouds are cooler. Southeast of the Galapagos, just west of the coast of South America, there is a place where you can distinctly see multiple layers of clouds, with the warmer clouds at lower altitudes, closer to the ocean that's warming them.
Introduction
Near infrared light consists of light just beyond visible red light (wavelengths greater than 780nm). Contrary to popular thought, near infrared photography does not allow the recording of thermal radiation (heat). Far-infrared thermal imaging requires more specialized equipment. Infrared images exhibit a few distinct effects that give them an exotic, antique look. Plant life looks completely white because it reflects almost all infrared light (because of this effect, infrared photography is commonly used in aerial photography to analyze crop yields, pest control, etc.) The sky is a stark black because no infrared light is scattered. Human skin looks pale and ghostly.
How can we "see" using the Infrared?
Since the primary source of infrared radiation is heat or thermal radiation, any object which has a temperature radiates in the infrared. Even objects that we think of as being very cold, such as an ice cube, emit infrared. When an object is not quite hot enough to radiate visible light, it will emit most of its energy in the infrared. For example, hot charcoal may not give off light but it does emit infrared radiation which we feel as heat. The warmer the object, the more infrared radiation it emits.
Near infrared imaging applications
v Semiconductor analysis
v Pharmaceutical formulation analysis
v Textiles
Abstract
It is simply measuring the light that we cannot see. Here we use near and far infrared rays for image acquisition. "Near infrared" light is closest in wavelength to visible light and "far infrared" is closer to the microwave region of the electromagnetic spectrum. The longer, far infrared wavelengths are about the size of a pin head and the shorter, near infrared ones are the size of cells, or are microscopic. Far infrared waves are thermal. In other words, we experience this type of infrared radiation every day in the form of heat! The heat that we feel from sunlight, a fire, a radiator or a warm sidewalk is infrared.
Conclusion
Near infrared light consists of light just beyond visible red light (wavelengths greater than 780nm). Contrary to popular thought, near infrared photography does not allow the recording of thermal radiation (heat). Far-infrared thermal imaging requires more specialized equipment. Infrared images exhibit a few distinct effects that give them an exotic, antique look.
No comments:
Post a Comment